@NUSTEMxmas: our festive, robotic, IoT glockenspiel

Every now and then, we (Jonathan and Joe) get an idea stuck in our heads. It’s usually a ridiculous idea, an idea that should never see the light of day. But then, one of us says it out loud…

We’d like to introduce you to the NUSTEM IoT Festive Glockenspiel™.

Whilst you pick your jaw up off the floor, we’ll explain what’s going on and offer a little background as to how we ended up with this creation in our office.

The Glockenspiel has the brains of a Raspberry Pi, and those brains are listening to Twitter. When anyone tweets to @NUSTEMxmas and requests a festive tune, our Pi picks up the message and quickly searches through our vast bank of early 00s mobile phone ringtones for a match. A command is then sent to another Pi elsewhere in the office, which decodes the ringtone and instructs yet another Pi to rev eight servos into action. Those servos move hammers which strike our home-made, only-slightly-out-of-tune, no-sharps-or-flats, plays-with-enough-enthusiasm-to-occasionally-break-itself glockenspiel. We also added flashing lights – synced to the music, obviously –  to enhance the festive mood, and a readout so we know who’s requested the song. One of the Pis (we forget which, but probably the first) also tweets a reply to the original requester.

If you’re interested in finding out more about how it works, we’ve documented our code on GitHub. You can download it and (in theory…) build one of these things yourself. Or poke around in our code for festive giggles: we cobbled this whole project together using bits of previous projects or longer-term incomplete ideas, so the system architecture is at the hilarious end of software engineering.

How we got here

The Glockenspiel is a spin-off from our Robot Orchestra workshop. We’ve been running this digital making activity with our schools and as a public drop-in for several years. The workshop (and the robots) have gradually developed, becoming a little cleverer each time:

  • First version: Arduino controllers move servos on a fixed beat pattern.
  • Second version: Arduinos ‘easily’ reprogrammable, and operating two servos.
  • Third version: Wemos D1 controllers commanded over wifi from a Raspberry Pi, hence all playing in sync.
  • Fourth version: Command system can parse saved patterns and so ‘play tunes’; controllers can respond to one of eight ‘channels’.
  • Fifth version: You know, things get a little hazy somewhere in here…
  • nth version: System controlled by a lovely light-up button board, or a less glamorous but more practical on-screen interface. This is both a super-modern visual programming environment, and something that looks uncannily similar to the sort of punched cards that were used to drive weaving looms and started all this stuff off in the first place.

We’ve built the various parts of our system in a modular sort of way, so it’s relatively easy to switch bits in, remove parts, or graft in new ideas. We use this approach in lots of our digital making projects, with the result that ideas and bits of code are easily shared across projects. We also have a habit of attempting projects which are right on the edge of what we think we can do, but which feel achievable because we’ve already solved half the problems in other projects.

(an early version of the robotic glockenspiel – from, like, Tuesday or thereabouts – showing the on-screen direct programming interface. This was before we built the parser for mobile phone ringtones.)

The new parts we’ve built for this version of the project include:

  • Using a Raspberry Pi as our servo controller, and driving eight (count ’em, eight!) servos from it. Thanks to Ben Nuttall for pointing us in the right direction for that.
  • Handling requests from Twitter. We’ve done this before, but we’ve done a better job of it this time.
  • We found a library of suitably festive songs … in RTTTL mobile phone ringtone format, which is one of those things that rather died out in 2004. So we dredged up music theory half-remembered from our pre-GCSE days and leaned on bits of code from others (RTTTL parser; frequency-to-note convertor), and ended up with code which plays ringtones on our…
  • …home-made copper pipe glockenspiel. Which was itself inspired by this Instructable. Big thanks to everyone who came to our Raspberry Jam last weekend and mucked in to help build this!
  • We added a Pimoroni Displayotron HAT screen, which was intended for a completely different project but was just too bling not to use. Only later did we realise there’s a whole monitor literally right next to it. Oh, well.
  • Finally, we hacked some of the older Wemos-based players so they drove twinkly lights rather than servos, and used them to increase the total amount of festive.

We’ll use bits of this system in a variety of ways throughout 2018, so it’s not even the case that we’ve been massively goofing off in work hours. Mostly. Sadly, we didn’t manage to get to ‘posting video clips back to Twitter’ – most of the recipes we’ve seen for that sort of thing are video-only, which wouldn’t work so well for a musical project. So if you tweet us, you’ll just have to trust that the system has indeed played a little tune for us in the NUSTEM office.

Hmm… a little belief? At Christmas? It’ll never catch on.

 

New opportunities: GET North resources, Whole School Gender Equality, Computing resource grants

If you’re the sort of person who’s involved and engaged with NUSTEM’s work, these opportunities might be right up your street:

Great Exhibition of the North Teaching Resource Creators

The team running GET North 2018 are looking for help developing teaching resource packs for use across England at Key Stages 2 and 3. Separate packs will be produced to tie into the themes of the Exhibition:

  • KS2: Science, Art and Design, and Design and Technology
  • KS3: Computing, English, and Design and Technology

The organisers are looking to recruit resource creators; professionals who can provide current industry context and support to the resource; and SEN consultants.

Interested? Get the full details and the application form at the GET North website. Deadline 12 noon, 1st December.

IOP Whole School Gender Equality Programme

The Institute of Physics have a long-running project looking at improving gender balance in physics. Their reports and research are valuable and highly influential (they’ve been a key influence on NUSTEM, for example!). Currently 40 schools are part of a whole-school programme, making small changes in their environment which can lead to big changes in student outlook. Funding has recently been secured to expand this programme.

Participating schools will receive whole-school CPD on unconscious bias and gender equality; can nominate a Gender Champion to attend a free 2-day residential course; and will have access to funding to support further work, including dissemination to other schools and partners.

For further details and the contact email through which to express an interest, see the IOP’s website. Also, do keep us informed (nustem@northumbria.ac.uk), as we’re keen to assist in these efforts ourselves.

Community Foundation Raspberry Pi kit funding

This just in… the Community Foundation have up to £2,000 available to support the purchase of Raspberry Pi kits and CPD by primary schools, as part of a new project launched recently by Make Stuff NE and Tech for Life. For more information and to apply for funding, click those links. At the time of writing things aren’t quite working correctly; we think the relevant grant scheme may be this one, in which case it’s a very straightforward (online) form.

Family Space Explorers

We’re always looking for new ways to engage different audiences, and this winter our Family Space Explorers project is doing just that. Funded by the UK Space Agency, we’re engaging young children and their families with space science through STEM story workshops and hands-on activities in libraries across the north east.

Why families?

As a project, we believe that one way of addressing the STEM skills shortage is through long-term interventions. We want STEM conversations happening at home, amongst young families, so that when children later come to make career-critical subject choices they already have a wealth of experience and family support to guide their decisions. The Family Space Explorers workshops are aimed at children aged 2-5, along with their families. They’re carefully planned to help parents and carers build their confidence in exploring science and engineering topics with their child.

Why libraries?

Most of NUSTEM’s work is delivered via our partner schools, which are drawn from the local area. For some families, entering a school can itself be a barrier to engagement. Working in local libraries and community centres (along with schools!), in areas of higher socio-economic deprivation, we hope to reach a greater number and variety of families.

The Workshops

We’ve developed two workshops, each with activities linked to books for young children. The sessions are each 45 minutes long and involve shared reading and activities. At the end of each session, participants get to keep a copy of the book, so they can continue the reading and activities at home.

Choosing the stories was difficult. We aim to embed diversity and equality throughout our work, and it was tricky to find stories that had strong female lead characters. In book after book we found male characters (children and adults) heading into space… with very little representation from female characters.

We chose “Goodnight Spaceman” because of its charming story and strong links to the UK Space Agency. We also wrote our own book, “Are we nearly there yet?” to explore space exploration through non-fiction, which allowed us to cast a female lead character in the shape of a robot explorer. We also put together a list of other good STEM stories, which you can find at our Family Space Explorers page.

Linking activities

It’s important that our workshops can be repeatable by families at home – we want the interventions to continue beyond the end of the workshop. In the workshops, families use Duplo to build their own version of a space rocket to travel to the International Space Station, and a rover to explore the surface of Mars. The simplicity of the activities enable parents to continue constructive play at home, and to adopt similar approaches with other stories.

Supporting local schools

We’re sending a copy of our book to schools across the region, and inviting teachers and educators who work with young children to attend our two free training sessions. These sessions will equip teachers to deliver the sessions in their own schools.

How to get involved

We have a number of sessions booked into our calendar over the next few months. If you have children aged 2-5 and you’d like to attend, click here to view upcoming sessions and find details of how to book onto the events.

Tetrahedral Kite, Beamish

As part of Beamish Museum’s ‘Wind in Your Sails’ event, visitors today helped us make this amazing tetrahedral kite. It’s constructed from drinking straws, survival blanket, fishing line, and tape (OK, and a couple of cheeky lengths of dowelling to reinforce the keel and spine).

Built and flown (…and crashed) in the same day. Huge thanks to everyone who helped out. We hope you enjoyed building this as much as we did.

Alexander Graham Bell

Better-known for inventing the telephone, Scotsman Alexander Graham-Bell was also obsessed with kites. Specifically, box kites based on tetrahedral cells, just like our. There’s a terrific set of photographs of these at Public Domain Review, here’s just a taster:

Alexander Graham-Bell's 64-cell tetrahedral kite.

Alexander Graham-Bell’s 64-cell tetrahedral kite. Public domain.

Looks familiar?

Sunday

One of the neat features of this design is that it works at several different scales. If you think of the single tetrahedron as being one ‘cell’, then a 4-cell kite will fly pretty well. A 16-cell kite flies really well. Even in the gusty wind at Beamish, on Sunday Carol and Antonio managed this:

Thanks for all your help!

International Women in Engineering Day 2017

Today (23rd June) is International Women in Engineering Day.

Across social media, companies and organisations are tweeting and posting to show their support for women in engineering.

Tweets which show employees looking happy, often standing in front of large equipment!

Here at NUSTEM, we think that it’s really important to show the diversity of the engineering profession along with other STEM careers.

American activist Marian Wright Edelman said

‘You can’t be what you don’t see’

It’s not having role models exactly, but thinking that if someone else, who is like you, can be in a career, then so can you.  We hear parents tell their children ‘You’re just like your Aunty, she’s very good with numbers.  Perhaps you could be an accountant like her’ or words to that effect.

We believe that it’s important that children and young people see ‘people like them’ in a range of careers.

In school, one of the most common sources of information when students are ‘researching’ is wikipedia.  And wikipedia is a good starting point.  But what if students want to find out about women who work in science or engineering.  How good is wikipedia then?

Sadly, it’s not great.  Only 15.5% of Wikipedia articles on people are about women. So when students look for information about people in science and engineering, they’ll get a skewed viewpoint.

Here at NUSTEM we’ve teamed up with Dr Jess Wade from Imperial College and Dr Alice White, resident wikipedian at Wellcome Trust to change this imbalance on wikipedia.

On 25th July we will be hosting a day-long wikipedia Hackathon for girls aged 14 – 18 in the North East.  Girls will find out how to judge the reliability of a source, when and where to reference and how to edit wikipedia to create their own content.  They’ll then edit or create wikipedia pages with information about some of the great women who are working in science.

If you’re interested in joining us, and are aged 14-18, then please sign up on our eventbrite page.

And if you’re looking for more images and stories about women in engineering then follow the hashtag #IWED on twitter.

Goodbye Think Physics, hello NUSTEM

We’ve changed our name.

We started as Think Physics in 2014, but as the project has grown we’ve come to view that name as, well, not quite right. Whilst we continue to be committed to addressing the challenges facing — in particular — gender balance in the physical sciences, we now work much more broadly than our original name suggested. Within Northumbria University, we work across departments; with our partner primary schools we support the whole STEM curriculum; and at secondary we aim to support technology, engineering, computer science, maths, and more, in addition to physics.

So we’ve bitten the bullet and given ourselves a shiny new name which better reflects what we do. We’ve also switched from lovely organic green to dashing university orange.

We continue working with our partner schools and delivering everything we’ve done previously – and we’re  already finding our new name opens doors more widely across the University. So watch out for exciting news from us in the very near future.

125,000 rpm centrifuge… powered by hand, made from cardboard

This is outstanding!

One of the first steps in a whole host of blood tests which might be used for medical diagnosis is to ‘spin down’ the sample – to bung it in a high-speed centrifuge and whirl it around, separating out the red blood cells from the blood plasma. Accordingly, you’ll find centrifuge equipment in every haematology lab in the West… but they don’t work so well in places where the electricity supply is shaky.

In 2013 Indian-born Manu Prakash, now a physical biology researcher at Stanford University in the US, stumbled over a centrifuge in a clinic in Uganda. Literally stumbled, as it was propping open a door.

Prakash is the same guy who, a year ago, introduced a microscope made from folded paper and a cameraphone. The result of his discussions about centrifuges is similarly simple yet inspired: his team at Stanford have now adapted an ancient children’s toy to make a hand-powered, cardboard-based centrifuge which achieves 125,000 revolutions per minute. That’s astonishing, and it’s sufficient to prepare samples for a range of tests in just a few minutes.

The ever-marvellous journalist Ed Yong (check out his book I Contain Multitudes!) has the full story at The Atlantic, with more details of all the juicy bits of physics the group had to do to optimise the toy for medical use. It’s one of those simple systems that nobody had thought to study before. Nature have produced the video above, and the invention is written up as a paper at Nature Biomedical Engineering.

The “Paperfuge” can be made for something like 20 cents, and the researchers have even submitted an application to Guinness World Records for the fastest rotational speed via a human-powered device.

Prakash’s group are now testing their design in rural Madagascar, and are exploring 3D-printable plastics in the hopes of being able to cheaply produce centrifuges which are integrated with specific blood tests, or transparent versions which would double as microscope slides.

Awesome invention.

(Raspberry) Pioneers, Bright Ideas: opportunities for secondary students

The lovely people at the Raspberry Pi Foundation – the folks who spend the money made from selling all those zillions of credit-card sized computers – have launched their programme for 12-15 year-olds, Pioneers. The idea is: a group of friends gets together, they find a mentor (an adult who can help them along, and also sign things on their behalf), then they take part in a mass group challenge. There’s a fresh challenge every three months, and the first one’s just been announced; see the film above for details, but the basic idea is, “Use technology to make us laugh.”

There are prizes for the best japes, hence there’s a submission deadline of 22nd March 2017. The plan is also that the challenges produce starting points and examples for a huge range of projects, all using digital technology, so everyone can learn from everybody else. Or something like that.

Interested? There are more details at the Pioneers web page, along with links to register a team, information for mentors, suggestions for starting points, and so on.

We’ve been waiting keenly to see what the Pi Foundation ‘do’ at secondary to follow on from their Code Club offer for primary ages, and we look forward to seeing how Pioneers develops. We’re particularly looking forward to laughing at some of the creations from this first challenge.

Shell Bright Ideas Challenge

Meanwhile, if you’re after a more traditional sort of competition, Shell UK are again running their Bright Ideas Challenge. Unsurprisingly, their challenges are based around energy. Here’s the glossy introductory film:

There are a range of ‘what-if…?’ future technology challenges, along with resources for participants and teachers and further films to introduce each of the challenges, on the project website. Submissions are due by 21st April 2017.

Here at Think Physics orbiting world headquarters we have mixed feelings about competitions for secondary students. They certainly can be of value to students, but there are so many of them it’s hard to know which are worth investing time in. In this case, project resources look comprehensive and well-presented, so it should be straightforward to take a look and see if Bright Ideas seems a good fit for you and your students.

If your school took part in Bright Ideas last year, leave a comment below or drop us a line to let us know how it went, and whether you’d do it again.

Astronauts, sports scholarships, the web, deforestation, and the power of unexpected connections

Here’s a delightful little story from web developer Sarah Mei, posted on Twitter. It starts out being about American university sports scholarships, but heads off in directions you’re really not going to expect.

We all assume, when we’re in school, that we’re going to have ‘a career’, that it’s going to make sense, and that we can map out roughly how it’s going to go. For some people that’s absolutely true, but for many (most?) of us, our lives take twists and turns we’d never have predicted. Some of us rather like it that way, even if we don’t have stories quite as good as this.

Tip of the hat to Elin Roberts for the link.

Connecting with Physics

When I did my A-levels a couple of decades ago, there were only two or three girls in my physics class. The situation has got a little better since then, but many girls still find they are in a minority in their physics class. Whilst this doesn’t stop the students enjoying physics and doing well, it can sometimes feel a bit isolating.

To help the situation here in the North East, Think Physics is running a second year of our Physics Connect Network. This aims to allow girls from different schools to connect with each other through on-campus meetings and an online support group.

The network kicks off on January 28th with a Saturday morning session. Award-winning physics communicator Dr Jess Wade will be talking about her research at University College, London, on flexible solar cells. We’ll also look at where physics can lead to in terms of careers.

Later in the term there will be sessions on practical work using K’Nex, an Easter revision morning, and a visit to a local physics-related industry (watch this space for details!).

You can find more about the network sessions here, and the timetable for January 28th, including a booking link, here.

Reece Engineering Summer School

As well as Physics Connect, Think Physics organises a three-week summer school for Year 12 female Physics and Engineering students. Funded by the Reece Foundation, the course provides an introduction to engineering in its many forms. It’s an intense and hectic few weeks, with industry visits, challenges, individual and group research, presentations… everything we can cram into the time.

Applications are now open for the 2017 school: for more information and the application form, click here.